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Practical cone-beam algorithm
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A convolution-backprojection formula is deduced for direct reconstruction of a three-dimensional density functionfrom a set of two-dimensional projections. The formula is approximate but has useful properties, including errorsthat are relatively small in many practical instances and a form that leads to convenient computation. It reducesto the standard fan-beam formula in the plane that is perpendicular to the axis of rotation and contains the point
source. The algorithm is applied to a mathematical phantom as an example of its performance.

1. INTRODUCTION

Direct reconstruction in three dimensions from projection
data has been the subject of many studies.' As used here,
direct three-dimensional (3D) reconstruction implies use of
two-dimensional (2D) projection data with reconstruction on
a 3D mesh of points, which may or may not be organized as
parallel slices. In medical applications, direct 3D recon-
struction is at the forefront of investigation2 ; to our knowledge,
no commercial tomographic scanners employ direct 3D re-
construction. Industrial use of tomography as a nonde-
structive evaluation (NDE) technique is still quite limited.
Use of x-ray image-intensifier images as tomographic input
is a natural extension of electronic radiography and is being
pursued in our laboratory in a system of minimum mechanical
complexity. The system consists of a microfocus x-ray source,
a single-axis rotational stage, and the x-ray image intensifier
with associated electronics. Hence a fast and reliable direct
reconstruction procedure should be valuable.

Several methods of attacking the full 3D problem have been
proposed. Altschuler et al. 3 have reviewed many of these.
Colsher4 described iterative methods that can be applied to
the problem. Altschuler et al.5 proposed a basis-function
method of reducing the dimensionality of the problem; how-
ever, no examples of application to real or mathematical
objects have appeared. Altschuler et al. 6 has also used an
interative technique based on Bayesian optimization. The
"twin cone-beam" geometry has been discussed by Schlind-
wein7 (iterative method) and by Kowalski8 (basis-function
method). Knutsson et al. 9 have discussed a different method
for a geometry similar to that used in traditional (noncom-
puterized) axial transverse tomography. Their method is
based on the projection-slice theorem, applied as if rays from
the source were parallel, and involves 2D filtering and
weighting. Nalcioglu and Cho'0 and Denton et al." have
presented convolution-backprojection methods that are ap-
plicable if the source positions encompass a sphere about the
object, rather than just a circle as in the present case. Tuy12
has given an inversion formula that is appropriate when the
source positions lie on two intersecting circles. Minerbo13 has
used the 3D form of the Radon inversion formula to derive an
approximate solution for the geometry of interest here, i.e.,
a single circle of source positions. Unfortunately, his method
is computationally intensive, and his derivation contains an

error that cannot easily be rectified. Herman1 and Lewitt and
McKay14 have described use of the unmodified fan-beam re-
construction method to handle cone-beam data. The latter
authors also have described a modification in which
backprojection in three dimensions is used. When the cone
angle is small, as it is in the scanner being developed at the
Mayo Clinic,2 these convolution-backprojection procedures
work quite well.

Since none of the methods mentioned above is fully satis-
factory for our applications, we describe in this paper an al-
gorithm appropriate to our geometry that can be implemented
easily. Like that of Lewitt and McKay,14 our procedure in-
volves convolution and 3D backprojection; it further includes
the crucial step of correctly weighting the data. This is ex-
tremely important if the cone angle is large and ensures that
certain desirable properties will be present. Our method is
necessarily faster than iterative methods and for reasonable
cone angles produces reconstructions not significantly inferior
to those of slice-by-slice reconstruction using parallel- or
fan-beam data, acquisition of which for 3D reconstruction
requires a system of significantly greater mechanical com-
plexity.

In Section 2 we review the fan-beam method from our
perspective. In Section 3 we present the cone-beam algorithm
and discuss some of its important properties. In Section 4 we
present results of application to a mathematically constructed
phantom.

2. FAN-BEAM RECONSTRUCTION FORMULA
In this section, we rewrite the Radon transform for two di-
mensions in the form of a convolution and backprojection.
This results in a fan-beam reconstruction formula and is a step
preliminary to the determination of an algorithm for 3D re-
construction. The planar detector system may, for conve-
nience, be represented by its projection on a plane parallel to
it that contains the axis of rotation. This axis is a distance
d from the x-ray point source, as in Fig. 1. Hereafter, we refer
to the detector plane as if it were in the plane containing the
rotation axis. A simple scaling by d/D converts data from the
actual physical arrangement to this form. We refer to the
direction defined by the axis of rotation as the axial (or z)
direction and refer to the plane that contains the point source
and is perpendicular to the axis as the midplane. Planes
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p(l,0) = Sfrdr Jf dkf(r,0)[r cos(0 - 0) -11, (4)

i.e., a line integral of the density f (r, ). Clearly, we should
assume that for r > d, f(r, 0) vanishes. Consequently,

p(l, 0) = P(Y), Ill <d
(5)

= 0 , Ill > d.
From the projection data, the density can be reconstructed

according to the Radon transforms:

f(r,4) =1 da-O dl -p(l, 0). (6)
4-7r2 f __ r cos(O - ) -1 al

The symbol f represents the principal value of the inte-
gral.

Let us now introduce the Fourier transform q(w, 0) by
writing

Fig. 1. Schematic physical arrangement of the 3D tomographic
system. The source-to-rotation axis distance is d; the source-to-
detector plane distance is D = d + d'.

a

x

Object

a'

p(l, 0) = Jy -exp(iwl)q(c,, 0).
-X 27r (7)

Substituting into Eq. (6) and performing the principal-value
integration, we find that

f (r, 0) = 8 f d0 Sf. I ldwq(w, 0) exp[iwr cos(0 -

(8)

The final form in terms of the coordinates (1, 0) is obtained by
noting first that the density is, of course, real and then by in-
verting the Fourier transform:

f(r, A) = - Re id0i fw dw f dlp(l, 0)
47r2 f _

Source
Fig. 2. Geometry in the midplane for derivation of the fan-beam
formula. The detector system is here represented by its projection
on a line (a-a') through the origin and parallel to the actual detector
line.

parallel and perpendicular to the midplane are called hori-
zontal and vertical, respectively. The intersection of the axis
and the midplane is taken as the origin of coordinates. The
angle of rotation is 4', and the coordinate along the detector
that specifies the point of detection is Y. Only projection data
(Fig. 2) along the intersection (a-a') of the midplane and the
detector plane apply to the fan-beam case; a point along the
line of intersection is defined by a coordinate Y. We take the
object to be fixed and the source and detector to rotate about
it with angle (D. The perpendicular distance 1 from the origin
to the ray that intersects the detector plane at Y is related to
Y by (see Fig. 2)

I = Yd/(d 2 + Y2 )1/2 or Y = ld/(d 2 - 12)1/2. (1)

The angle 0 from the x axis (fixed with respect to the object)
to the perpendicular is given by

0='b+ir/2+ a, (2)
where

a = tan-'(Y/d) = tan'1[l/(d2 - 12)1/2]. -(3)

The value of the projection is denoted by Pt(Y), or by
p(l, 0), where in cylindrical coordinates

X expliw[r cos(0 - A) - 1]}, (9)

where Re indicates taking of the real part. If one were dealing
with the parallel-beam case, Eq. (9) would be appropriate.
However, since in the actual situation (divergent-beam case)
the convenient coordinates are (Y, 4D), we must change vari-
ables. From Eqs. (1)-(3) we can determine the Jacobian, so
that we have

dOdl = d4'dYd 3/(d 2 + y2)3/2. (10)

Making a further change of variables, which is just a scaling
of the frequency

(11)(o = w[d + r cos(4, - 4')]/(d 2 + y 2) 1/2,

we find (dropping the prime) that

f(r, 0) = - Re d4' [d + r cos(o-)] 2

X wdw d d _ P4(Y)X o w dY (d2 + y 2 )1/2

X exp [ ( dr sin( - 4))
I. d + r cos(4, -4' 11- 

(12)

Since the detector spacing dc is finite, the frequency range
is limited to w < 7r/d8, and it becomes necessary to bandlimit
Eq. (12). We can therefore write

1 d2___ _ __ _ _

f(r, 4) =47r2 f d4 [d + r cos(4, - 4 ')]2 P[Y(r, ¢)], (13)

where
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Y(r, 0) = dr sin(o - 4)/[d + r cos(o - 4')], (14)

dYpY =d P.,>(Y')g(Y- Y'), (15)RI'm = dY'_ (d2 + y'2)1/2

and
A

g(Y) = Re W exp(ico"Y)cdco. (16)

The function g( Y) is the convolution function, and P.(Y) is
the convolution of g and P1.(Y). Equation (13) represents the
backprojection of the convoluted data, since Y depends ex-
plicitly on the reconstruction point (r, 4) and is the desired
result. This result, although written differently, is substan-
tially the same as that given by Herman et al. 15

In practice, P., (Y) is sampled for discrete values of 4' and
Y (or averages about such values). Hence we have tP.>(i)(Yj)}j
with A t4 = 4'i - 4'i- and A Y = Yj - Yj-.., assuming equally
spaced samples. We assume that P.,,(Y)cos 0 is slowly varying
compared tog(Y) and define [cos 0 = d/(d 2 + y 2 )1/2]

P.,(i)(Yj) = P.i.(i)(Yj)cos or Y g(Yi - Y')dY'.1' 3~~fy YAY/2 -Y)d'

(15')

We take cYo = 7r/LY. Forg( Y) as in Eq. (16), definingPA,(i)-
(Yj) as in Eq. (15') is equivalent to use of the Shepp-Logan' 6

window.

3. CONE-BEAM RECONSTRUCTION
FORMULA
The purpose of this section is to make plausible an algorithm
for 3D reconstruction. First we present a heuristic develop-
ment. We subsequently derive analytically some important
properties of the algorithm and demonstrate numerically some
measure of its performance. No rigorous proof exists for what
follows, since the result is approximate.

The procedure of this section is as follows. From the results
of Section 2, we determine the incremental contribution /f to
the reconstructed density from the projection data for a small
increment 34' of rotation angle. From the projection data
along the intersection of the detector plane and the midplane
(Z = 0), the contribution at points that lie in the midplane can
be calculated. The projections that intersect the detector
plane along a line parallel to the midplane, but not in it
(constant, nonzero Z), themselves define a plane. This plane
is treated as if it were the midplane of another, tilted ar-
rangement. [Of course, if we had a complete set of projections
(i.e., all rotation angles about the normal) for such a tilted
plane, we could reconstruct the density for this plane by using
the Radon transform. This would entail sweeping the source
around the sample along a circle in the tilted plane.] We must
correct for the difference between the actual rotation 34' about
the vertical axis and the equivalent rotation 34" about the
normal to the plane. Further, the source-to-detector distance
in the tilted plane must be substituted into the Radon trans-
form. Making these corrections, we obtain the increment of
reconstructed density. The total density at a point r is taken'
to be the sum of the incremental contributions from all planes
(one for each rotation angle) that pass through r. The planes
of projection that contribute to the reconstruction at a given

.t
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A
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Source
Fig. 3. Coordinate system for describing projection and recon-
struction in the midplane of a 3D system. The unit vectors mh, n, and
k form an orthonormal set. The axis of rotation is along k.
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Source
Fig. 4. Coordinate system for projections above the midplane. The'
axis of rotation is along z. The vector n is parallel to the midplane.
The vector k is inclined with respect to z and is given by f = m X n.
p' lies in the shaded plane.

r may be visualized as forming a sheaf. Except for points in
the midplane, the sheaf for each reconstruction point is
unique.

First we rewrite Eq. (12) using a vector notation. Let p
extend from the origin to the reconstruction point, let mh be
a unit vector along the ray from the source to the axis of
rotation (i.e., normal to the detector), let A be along the de-
tector in the plane of rotation (Y direction), and let I be
normal to the plane. The three unit vectors m, ni, and I form
a right-handed, orthonormal set (see Fig. 3), so 0 = mh X A.

In the midplane, the density is, from Eq. (12),

-P =IRe d 1 wdw4r 2 ,f (d + p -) 2 So
=, dY - RD2 + y2)2P,(Y, Z = 0)

X exp iW ( dp-n _ (17)

Here we note specifically that it is the z = 0 plane under con-
sideration.

Next we consider all projections for some angle 4' of the
source that pass through the detector plane along a line Z =
constant • 0 (scW Fig. 4). These projections define a plane
in which the um unit vector now points along the ray from the
source to the detector at (Y = 0, Z) and A is along the Y di-

- ~~~~~~~~x
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rection. The normal is given by k = mh X i and is tilted from
the z axis (axis of rotation). Note that the redefined unit
vectors rm, n, and h reduce to those of Fig. 3 for Z = 0.

Now a small range of rotation 34 about the z axis is equiv-
alent to a rotation of 34" about A. To first order,

(18a)6tm = 34's X mh

d
(d2 + Z2)1/2

(18b)

f(r) = 2 d (d+ 2 _ kd[Y(r), Z(r)],
47r2 . (d + r -:e)2

where

Y(r) = r -.'d/(d + r *£),
Z(r) = r * id/(d + r - '),

P5(Y, Z) = 5 dY' 5 dZ'gy(Y - Y')g,(Z - Z')

and
5rm = 64"'k X mh (19a)

= b4"i. (19b)

Equating Eqs. (18) and (19), we have

34" = 34'd/(d2 + Z2)1/2. (20)
Let us calculate the contribution to the reconstructed

density. Any reconstruction point in the plane can be written
as

r = p' + Zi, (21)

where p' lies in the shaded plane of Fig. 4, i.e.,

p 4.i = O. (22)

For Z = 0, p' is identical with the p of Eq. (17). The distance
from the source to the axis is d' = (d2 + Z 2 "1/2 . From Eq.
(17), we have

bf(p' + Z) = 2- Re 30' -+' )2 codw

di
X X dY (d' 2 + y2)1/2 P4(Y' Z)

X exp~ I dp -*_ --Y]. (23)

From Fig. 4 and Eqs. (21) and (22),

Pi - mh = d ' r - x'/d (24)

and
d' (d2 + Z 2 )' 12

(d'2 + y2)1/2 (d2 + y2 + Z2)1/2
(25)

Substituting into Eq. (23), we find, for any reconstruction
point r = (x, y, z) in the plane, that

5f()=1Re &D d codc~r) 2 R (d + r . )2Jo
XP dY d Pl)(Y Z)
XJ5 dY (d2 + y2 + Z2)1/2

l exp l dr-' ) (26)
where

x P4,,(Y', Z')d/(d 2 + Y' 2 + Z' 2)1/2,

gy (Y) = Re f odw exp(icWY),

(31)

(32)

and
g, (Z) = sin wOZ/7rZ. (33)

As it was in Eq. (16) for Y, band limiting that is due to the fi-
nite detector spacing has been introduced in Eqs. (32) and (33)
for both Y and Z.

It is clear that, as d - I, Eq. (28) goes into the correct
slice-by-slice form of the parallel-projection case. Further-
more, for the z = 0 plane, Eq. (28) is the exact result for any
d (aside from the limitations imposed by band limiting). It
is shown in Appendix A that Eq. (28) gives the correct result
for the intensity integrated in the axial direction, fra dzf(r).
From this we conclude that density is conserved along lines
parallel to the axis of rotation. This is an important property,
as it implies that the principal distortion to be expected is
blurring in the axial direction. Further, it can be shown that
each reconstructed horizontal slice of an object with vertical
translational symmetry will be identical to the midplane slice.
Using these properties in addition to linearity, we conclude
that blurring in the axial direction occurs only for that portion
of an object that remains when the translationally symmetric
portion is subtracted.

Discretization of the cone-beam algorithm proceeds as be-
fore. The sampled data IPN(i)(Yj, Zk)I are convoluted simi-
larly to Eq. (15'):

PA(i)(Yj, Zk) = E pc(yj, Z)
j',k'

Y,Y'+AY/2 )Y
X Cos 0j'k' Igy (Y1 - Y')YJ Y'-AY/2

X AZag+ Z/2
X |- 2 (Zk-Z')dZ',J.Zk,-AZ/2

(34)

where AZ = Zk - Zk-1 and cos Oj'k' = d/(d 2 + yj,2 + Zk,2)1/2.

As before, we have averaged the convolution functions over
intervals centered on the sampling points. It appears that
averaging in the axial direction is not crucial; replacing the last
integral in Eq. (34) by g, (Zk - Z')LAZ and taking W,0 = 7r/AZ
effectively eliminates the Z convolution since g_(Zk - Zk')AZ
= akk'. As in the fan-beam case, linear interpolation on
{Ps(i)(Yj, Zk)} is used to determine Ap(i)(Y, Z).

Z = zd/[d + r x'].

Here we have made a change of notation, setting i = 9' since
it corresponds to the rotated y axis.

Following the usual procedures of convolution and
backprojection, we simply sum Eq. (26) over all projection
data, obtaining

4. APPLICATION TO A MATHEMATICAL
PHANTOM
The cone-beam algorithm described above has been in use in
our laboratory for over a year. It has been used to process
experimentally obtained projection data taken on a devel-

(28)

(29)

(30)

(27)
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Table 1. Detector Array and Phantom Used in Algorithm Testa
Source to rotational axis: d = 60.0
Source to detector plane: D = 60.0

For Fig. 5:
Detectors per row: 65; spacing, 1.0
Number of detector rows: 39; spacing, 1.0
Angular positions: 32

For Figs. 6 and 7:
Detectors per row: 129; spacing, 0.5
Number of detector rows: 79; spacing, 0.5
Angular positions: 128

For Fig. 8:
Source to rotational axis: d = 40.0
Source to detector plane: D = 40.0
Detectors per row: 169; spacing, 0.5
Number of detector rows: 133; spacing, 0.5
Angular positions: 128

Phantom Details
Position Diameters

Object x y z x y z Density
1 0 0 0 40 40 2
2 0 0 0 34 34 - -1.21
3 0 0 0 30 20 20.98 0.21
4 -5 0 5 10.95 10.95 10.95 0.053
5 -7 -6 -5 14.14 16.73 10.95 0.316
6 8 8 2 12 8 16 0.158
7 -13.3 0 8.16 9 9 2.5 0.21
8 4.44 -11.71 8.16 9 9 2.5 0.21

a (After Ref. 7.) The phantom is constructed by superposing the density contributions of six ellipsoids. The first two have been elongated to generate an innercylinder and an outer cylindrical shell. Ellipsoids 7 and 8 apply to Figs. 7 and 8 only.

opmental system designed primarily to explore applications
of x-ray tomography to industrial nondestructive evaluation.
The system is also being applied successfully to the exami-
nation of bone biopsy specimens.

Implementation of the algorithm is relatively straightfor-
ward. The weighting of the projection data is performed with
point-by-point multiplication by a precalculated 2D array.
The convolution step may be carried out as a series of one-
dimensional convolutions. The backprojection is performed
by projecting a reconstruction point into the detector plane
and then interpolating among the four relevant detector po-
sitions. The interpolation itself separates into horizontal and
vertical parts. Since the horizontal interpolation coefficients
are the same for all reconstruction points with the same (x,
y), the associated computation time is shared among the
number of vertical reconstruction points. Consequences of
this are that (1) the amount of computation per reconstruction
point is comparable with or less than that for the fan-beam
case, (2) the efficiency of the procedure increases with in-
creasing number of vertical reconstruction positions, and (3)
a single vertically oriented plane requires much less compu-
tation than a horizontally oriented plane with the same
number of sampling points. We have programmed the pro-
cedure for a general-purpose computer (VAX 11/780) with
attached array processor (FPS AP-120B). The array pro-
cessor is typically used for the computationally intensive
operations of convolution and backprojection, the host com-
puter being used to control the apparatus and preprocess the
incoming data.

In order to suggest the efficacy of the algorithm, we illus-
trate its application to a mathematically derived phantom
based closely on that given by Schlindwein 7 ; ours differs only
in that it is constructed purely of superposed ellipsoids. Table
1 gives the details of the phantom. This particular phantom
embodies potential difficulties, such as abrupt large density
changes, asymmetrically placed objects, and an object with
a density differing only slightly from that of the surrounding
region. Use of this phantom also provides an opportunity to
compare the present method with a previously described
procedure.

Projection data were formed from the phantom as analyt-
ically derived line integrals of the density from the origin to
each detector position. The detector arrangement described
in Table 1 approximates the amount of information used in
Ref. 7.

The reconstruction mesh bears no necessary relationship
to the detector array. To encompass the objects of interest,
the space extends 40 cm by 40 cm horizontally and 20 cm
vertically and contains 99 X 99 X 49 points. For display, we
have chosen five horizontal planes, equally spaced and sym-
metrically located about the midplane.

In Fig. 5 we compare the reconstruction of the selected
planes with an exact, digitized representation of the phantom.
The large range of density encompassed in the gray scale used
here for display renders difficult the observation of low-con-
trast features such as the sphere (object 4), which is only §7o
denser than its surroundings. However, as the plot of a single
selected line shows, the density difference is indeed reflected
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in the reconstruction. As expected, band limiting results in
rounding of abrupt density changes. Radial streak artifacts
are also visible, and considerable noise is apparent in the re-
construction of the dense outer shell. Note, however, that
these deficiencies are similarly evident in the midplane slice,
which amounts to a standard fan-beam reconstruction.

The reconstruction shown is substantially superior to those
in Ref. 7, in which the low-contrast sphere was clearly visible
only when the projection data were altered to conform with
the assumptions of the algebraic method.

The reconstruction noise and the streaks are both charac-
teristic of convolution-based methods and may be reduced by
increasing the number of angles. (If relatively few angles of
data are used, as in Fig. 5, techniques such as angular aver-
aging may be employed to reduce the streaking and the noise
with a small loss in edge definition.)

The reconstruction of edges may be improved by increasing
the frequency content of the projection data.- In Fig. 6 we
display the effect of doubling the number of detector positions
in each direction as well as increasing the number of angles
to 128. The reconstruction is seen to be quite good. Although
it is not apparent here, a slight blurring in the vertical direc-
tion exists and would persist regardless of increases in the
amount of data. For moderate cone angles, the effect is
negligible, especially when compared to uncertainties inherent
to experimentally acquired projection data. Furthermore,
since the blurring adversely affects only that structure that
differs from the background structure, it seldom should cause
a feature to be missed altogether.

Reconstruction errors may occur in this algorithm by virtue
of the incomplete data which with it operates. Although
generalizations are difficult to make because of the depen-
dence of such errors on the shape, density, and position of the

Fig. 5. Comparison of representative slices of a phantom with its
reconstruction. The phantom and the detector array used are defined
in Table 1. The lower row of slices is an exact digitized representation
of the phantom, with the corresponding reconstruction just above.
The horizontal line defines the position corresponding to the line
drawing, in which the density of the phantom (solid line) is compared
with that of the reconstruction (points). The scale is linear with a
range of 0.0 to 1.0.

Fig. 6. Same as Fig. 5 except that 128 angles and twice the linear
detector density were employed.

object as well as the source-axis distance, we offer the following
observations. The greatest errors might be expected with a
flat object lying parallel to and far from the midplane. The
reconstruction of such an object will be smeared in the vertical
direction over a distance related to (but much smaller than)
its shadow on the detector plane; hence, for a given source-axis
distance, the smearing will increase with increasing object
distance from the midplane. Interestingly, the smearing
tends to be less if the object is located away from the axis of
rotation. This may be understood by noting that the
smearing is a consequence of incompletely canceled spurious
density from the backprojection process. That-is, the shadow
of the outer portion of the object results in apparent density
above and below the object. If the object lies near the rota-
tional axis, the incompletely canceled density tends to accu-
mulate with each angle rather than being diluted or under-
going destructive interference. An extreme example of this
would occur with a torus located parallel to the midplane and
centered on the axis of rotation. In this case, spurious density
will result on and near the axis and will be undiminished by
an increase in the number of angles.

Having mentioned the difficult cases, we hasten to add that
the present method remains a significant improvement over
the unmodified fan-beam approach, in which the shadowing
effect is completely uncorrected. In Fig. 7 we display vertical
slices of the phantom described above along with the corre-
sponding slices reconstructed with the present algorithm and,
for comparison, with the stack-of-fans method, in which
horizontal lines of projection data are treated as conventional
fan-beam projections. In order to illustrate the comments
made above, we have augmented the'phantom with two oblate
spheroids, one of which is on the axis. We also show the error
of each reconstruction in the form of an absolute difference.
As in the horizontal slices, the most apparent deviations in
reconstruction by our algorithm amount to the smoothing of
abrupt density changes, a direct consequence of band limiting.
The flat objects are reasonably well defined, although some
blurring is evident, especially if the difference images are
examined. Each ellipsoid tends to spin off low-level artifacts;

Feldkamp et al.
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normalization (the latter is achieved in our method by the
weighting employed), the unmodified fan-beam approach can
generate uncontrolled spurious structure; note particularly
the structure produced by the upper flat ellipsoid.

The present algorithm holds up reasonably well for even
larger cone angles. As a practical matter, this may not be of
great importance, since current microfocus x-ray sources of
which the authors are aware have angular limits in the same
range as the cone angle represented by Fig. 8.

Although the results are not shown here, we have also
compared the present algorithm with conventional (slice-
by-slice) fan-beam results. When the calculations are made
under the same conditions, the reconstruction is nearly
identical with that of Fig. 7, the principal difference being that
it has slightly better defined flat ellipsoids and slightly less
noticeable spin-off artifacts. The treatment of abrupt density
changes is essentially identical (i.e., the edges are practically
invisible in images of the difference between corresponding
results). It is thus to be expected that much of what is un-
derstood about conventional convolution-backprojection
behavior will likewise apply to the present method.

5. CONCLUSIONS

We have presented an easily implemented, practical algorithm
for tomographic reconstruction from 2D projection data and
have illustrated its application to numerically generated
projection data. Its performance is shown to be generally
comparable with that of the standard fan-beam algorithm, of
which it may be regarded as a natural extension.

APPENDIX A
In this appendix, we prove two properties of the 3D algorithm:
(1) The integral S:c, dzf(r) is reproduced accurately and (2),
if the density is independent of z, the algorithm is exact.

As a preliminary, consider a 2D reconstruction for a density
6(p 0) (Dirac delta function). Since Pp(Y) is the line in-
tegral of the density,

P (Y) = (d2 + Y2 )1/2/(d + po X)
X 6[Y -(po - 'd)l(d + po -x')]. (Al)

The reconstruction based on substituting Eq. (Al) into Eq.
(15) in Section 2 gives [from Eq. (13)]

f d-1) (d + )2 g[(p -9'd)/(d + p *)
47r2 (d + p .. ~)2

d- (poo 9'd)/(d + Po x)i d + por (p-po), (A 2 )

to within the limitations of the 2D algorithm. Band limiting
in the convolution function g eliminates the components with
high spatial frequency. As yo -> a, expression (A2) becomes
exact. We use this result in the proof of property (1).

In three dimensions, we can write [ro = (Po, zo)]

PN(Y Z) = Cd2po dzofo(ro) d(d2 + y2 + Z2)1/2f f (d + po..~')2
X 5[Y - (po . 9'd)/(d + po x ')]b[Z - zod/(d + po x')],

(A3)
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Fig. 7. Comparison of vertical (x = constant) slices of the exact
phantom (middle row) with corresponding slices from the present
method (row below middle) and the unmodified fan-beam method
(row above middle). The display scale has been concentrated in the
density range 0.64 to 1.44 for clarity. Absolute differences from exact
are shown in the bottom row (present method) and the top row (un-
modified fan-beam method). In order to highlight small differences,
the scale is linear from 0.0 to 0.2. The phantom contains the two
additional ellipsoids noted in Table 1.
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Fig. 8. Same as Fig. 7 except that the source-axis distance d has been
reduced to d = 40.0 with a corresponding increase in the detector
coverage.

these generally are reduced with the number of angles and
could be reduced further by spatial averaging. The fan-beam
aproximation' results in considerably greater distortion,
especially for ellipsoids whose centers are off axis. The flat
ellipsoids are essentially unrecognizable.

In Fig. 8, we show what happens when the cone angle is in-
creased by reducing the source-axis distance by one third, such
that it is equal to the diameter of the outer cylinder and also
equal to the projection of the reconstructed volume on the Z
axis. This represents a cone angle of about 53 deg. The de-
tector system is extended to accommodate the increased
projected area. The present method continues to result in
well-defined objects, although blurring greater than in Fig.
7 is evident. Under these conditions, the stack-of-fans
method has become quite unreliable. Because of its lack of
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where fo(r) is the actual density. [If the algorithm were exact,
the reconstruction f(r) would equal fo(r).] Substituting Eq.
(A3) into Eq. (31) in Section 3 and taking the integral over z
of Eq. (28), we find that

1 d 2

dzf(r -= 4 d (d + dd2 p(r)S 7 f (d+ 
X gy [Y(r) - (p0 - 9'd)/(d + po ')] (d + px)

X j dzg, [zd/(d + r *x') -zod/(d + po -x')]. (A4)

Since g, is normalized [see Eq. (33)], the last integral on the
right-hand side of Eq. (A4) can be replaced by (d + r * x)ld.
Then, rewriting Eq. (A4) and letting r = (p, z), we have

5 dzf(r) = Jd2po Jdzofo(ro)
X ,fd4 (d gy ^)[(p* -9'd)/(d + p -2

- (po0 S'd)/(d + po -v ) d2 (A5)(d + po _-1)

The (D integral is the same as in expression (A2) except that
p and p0 are interchanged. (Recall that gy = g is an even
function.) Hence it can be replaced by 5(po - p), and Eq. (AS)
becomes

5 dzf(r) - dzofo(p, zo). (A6)

In the limit coyo - , expression (A6) should be exact, and
property (1) is proved. Note that taking coz -- is not re-
quired. The latter is a mathematical result for the continuous
case only; it does not imply anything about detector spacing
in the z direction.

Property (2) follows from observing that

P1(Y, Z)= (d + Y 2 + Z 2) 1 2 Pp(Y, Z = 0) (A7)(d2 + y 2)112

when the density is uniform in the z direction. The factor in
front of PD(Y, Z = 0) is due merely to path-length scaling.
Again, since g, is normalized, we obtain, from substituting Eq.
(A7) into Eq. (31),

PR(Y, Z) = dY'gy(Y - Y')

X P4(Y', Z = 0)d/(d 2 + y' 2)1/2, (A8)

which is independent of Z and is identical to R,(Y), the ap-
propriate convolution of the projection data for the two-

dimensional problem. Further substitution into Eq. (28)
gives a z-independent f(r) that is correct for the plane z = 0
and hence correct for all z.
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